Interaction Trees

A denotational semantics and its equational theorems

Formal Semantics

Operational semantics

e.g. big step/small step

- Semantics: execution (transition system + trace)
- S1 - event-> S2
- Intuitive \& Expressive
- Inductive reasoning

1. opsem: e.g. ssos/bsos, semantics is its execution (often modelled by TRS), expressive (nearly any feature can be modeled by transition systems \& traces), reason by inductive principles supported by most provers,

OpSem: not compositional

| Whole | Not Trivial! |
| :---: | :---: | | Part |
| :---: |
| $\mathrm{P} 1 ; \mathrm{P} 2$ |$\quad \mathrm{P} 2 \Rightarrow \mathrm{P} 3$

OpSem: syntax clutter

$\mathrm{E} \vdash$	trace	$\mathrm{E} \vdash$
$\mathrm{F} \vdash \mathrm{S} 1, \mathrm{~K} 1$	\rightarrow	$\mathrm{~F} \vdash \mathrm{~S} 2, \mathrm{~K} 2$
$\mathrm{LE} \vdash$		$\mathrm{LE} \vdash$
$\mathrm{M} \vdash$		$\mathrm{M} \vdash$

Axiom Semantics

e.g. Hoare logic

- Program: logic formulas that describe it
- Semantics: what can be proven about it
- Higher abstraction
- (Mostly) compositional
- Can be automated (SMT solvers)
- Details are lost

Denotational semantics

- Semantics: what a program denotes trivially
- e.g. Lang :=_+_ ${ }_{-}{ }_{-} \mid \mathbb{N} \Rightarrow \mathbb{N}$
- Math: domain theory ; PL: host language
- Reuse host language features -> no more syntax clutters!
- Can be executed/extracted
- Practical languages -?-> Proof assistant languages

Effects, non-terminating Pure, total
meaning of a program is what it denotes trivially. e.g. Lang denotes to nat.
In CS: denote to host language.
shallow representation: abstract away syntax clutters and reuse host language features
can be executed/extracted.
Problem: practical languages with effects and non-termination -?-> pure \& terminating proof languages? Introduce to ITrees!

Interaction Tree
 A shallow representation of (delimited) computations

```
putat ty effect value ty
CoInductive itree (E: Type -> Type) (R: Type): Type :=
    Ret (r: R) (* computation terminating with value r r*)
    Tau&(t: itree E R) (* "silent" tau transition with child t*) Crucial to non-terminating structure
    Vis {A: Type} (e : E A) (k : A -> itree E R). (* visible event e yielding an answer in A *)
```


1. show the definition, explain what E and R represents
2. explain what does each variant do
3. Ret: bare value
4. Tau: do nothing, silent, crucial to non-terminating structure
5. Vis: visible effects, kont (coq function, shallow)
6. delimited shallow computation split by Tau and Vis, can represent non-terminating computation \& effect

Interaction Tree

A shallow representation of (delimited) computations

```
Events may carry data
And they expect an answer
Inductive storeE :Type \(\rightarrow\) Type \(:=\)
| Read (v : variable) : storeE nat
| Write (v : variable) (n : nat) : storeE unit
Example: Vis (Read \(X\) ) \((\lambda(n)\) nat \()=>\)
Vis (Write \(Y(n+1))\left(\lambda()_{-}\right.\)unit) \(=>\) Ret 0))
```

A taste of effects, will come back to it later
Let's first talk about coinductive types

What is coinduction?

- Inductive type: What's inside the box?
- Coinductive type: What can we do about this box?

1. induction type: construct by saying what's inside it, i.e. defined by introduction rule.
2. coinductive type: construct by what can be done about it, i.e. defined by elimination rule.
3. coinductive type is like a black box with a button on it. defined by saying what will pop out after you push the button.

Example: list <-> colist. list: 1; $2<->$ colist: 1; 2 . list: there's 1,2 inside the box. colist: when press the button, it emits 1 , another box, then press the button on the new box, it outputs 2 and nothing.

flipflop: (show code), press once it outputs 1 and another box, press the button on the new box it outputs 0 , and the first box. output seq: $1 ; 0 ; 1 ; 0 ; \ldots$ Well typed, pure, total, but infinite, because it doesn't generate value unless you press the button.

5. Tau: by expanding all taus, you got infinite computation trace. but if you don't press it, it does nothing, i.e. terminating. Coq won't complain about this!

Examples of Trees

CoFixpoint echo : itree IO void := Vis Input (fun $x \Rightarrow$ Vis (Output x) (fun

CoFixpoint kill9 : itree IO unit :=
Vis Input (fun $x \Rightarrow$ if $x=$? 9 then Ret tt else kill9).

Equivalent relations

- Strong bisimulation: $\mathrm{t} 1 \cong \mathrm{t} 2$ => exactly the same shape

\square

$$
\approx_{R}
$$

itree $\emptyset \Sigma_{\text {Imp }} \upharpoonleft$ itree $\emptyset \Sigma_{\text {Asm }}$

$$
R: \Sigma_{\text {Imp }} \times \Sigma_{\text {Asm }} \rightarrow \operatorname{Prop}
$$

1. strong bisim: $\mathrm{t} 1 \sim==\mathrm{t} 2$ when t 1 and t 2 have exactly the same shape
2. weak bisim: observe: tau t evaluates to the same value as t, so we want Equivalence Up To Tau. (give def on slides) define weak bisim t1 $\sim \sim t 2$ with tau $t=t$, ONLY when removing finite number of taus (EqTauL \& EqTauR are inductively defined, so they can only apply finite times). When it comes to inf taus, both ends should have inf taus. => weak bisim is termination sensitive.
3. heterogeneous bisim: compiler compiles a language of return type A to a language of return type B. How to reason about them? Given a relation to match A and B, define eutt r (equivalence up to tau modulo r), in which Ret $a \sim \sim R$ Ret b iff a $R b$. Theorem: If R is equiv rel, then $\sim \sim R$ is equiv rel. eutt is a special case of eutt mod r with R := leibniz equality.

ITrees are compositional

(* Apply the continuation k to the Ret nodes of the itree $t *$) Definition bind \{E R S\} (t : itree E R) (k : R \rightarrow itree E S) : itree E S := (cofix bind_u := match u with
Ret $r \Rightarrow k r$
Tau $t \Rightarrow$ Tau (bind $t)$
| Vis e $k \Rightarrow \operatorname{Vis}$ e ($\bar{f} u n x \Rightarrow$ bind_ $(k x))$ end) t. Notation "x t1 ; ; t2" := (bind t1 (fun $x \Rightarrow$ t2)).
(* Composition of KTrees *) Definition cat $\{E\}$ \{A B C : Type $\}$ fun $h k \Rightarrow$ (fun $a \Rightarrow$ bind (ha) k). Infix ">>>" := cat

ITrees are compositional

$$
\begin{aligned}
& \text { Monad Laws }
\end{aligned}
$$

$$
\begin{aligned}
& (s>\Rightarrow t) \Rightarrow u \cong s>\Rightarrow t>\Rightarrow u
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t} 1 \cong \mathrm{t} 2 \rightarrow \quad \text { Tau } \mathrm{t} 1 \cong \text { Tau } \mathrm{t} 2 \\
& \text { Congruences } \\
& t 1 \approx t 2 \wedge k 1 \approx k 2 \rightarrow \text { bind } t 1 k 1 \approx \text { bind } t 2 k 2
\end{aligned}
$$

ITrees are compositional

```
id_ : A }->\mathrm{ itree E A
cat : (B }->\mathrm{ itree E C) }
cat : (B 隹 itree E C) }
case_ : (A }->\mathrm{ tree E C) }
    (B->itree E C) }->(A+B->\mathrm{ itree E C)
inl_ : A ->itree E (A + B)
inr : B }->\mathrm{ itree E (A + B)
inr_ : B ->itree E (A + B)
```


(i >>> j) >>> $\overline{\mathrm{k}} \approx \mathrm{\approx} \mathrm{i} \ggg(\mathrm{j} \ggg \mathrm{k}$)
(i $\ggg \mathrm{j}) \ggg \mathrm{k}$
pure $\mathrm{f} \ggg$ pure $\mathrm{g} \underset{\approx}{\approx}$ pure ($\mathrm{f} \circ \mathrm{g}$)

Recap: State

(m, v)
$x<-1$
set $x ;$
$(, 1)$
$x<-$ get;
$(1,1)$
$x+1$
$(1,2)$

State effect handler

(* The type of
state events *)
Variant stateE (S : Type)
: Type \rightarrow Type :=
| Get : stateE S S
| Put : $S \rightarrow$ stateE S unit.
(* Handler for state events *)
Definition h_state (S:Type) \{E\}
: (stateE S) \leadsto stateT S (itree E) :=
fun _ e \Rightarrow match e with
I Get \Rightarrow gett $s \quad$ trec $E A$
| Put s \Rightarrow putT S s end.
(* State monad transformer *)
Definition stateT (S:Type) (M:Type \rightarrow Type) (R:Type) : Type := $S \rightarrow M(S * R)$.
Definition getT (S:Type) : stateT S M S := fun $s \Rightarrow$ ret (s, s). Definition putT (S:Type) : S \rightarrow stateT S M unit := fun $s^{\prime} s \Rightarrow$ ret ($s^{\prime}, t t$).
(* Interpreter for state events *)
Definition interp_state \{E S\}
: itree (stateE S) \rightarrow stateT S (itree E) :=
interp h_state.

fect handler: convert a itree with effects into one with no effect and modified value (state, value) (slide: show tree example)

interp

3. interp function: take eff, take ITree E A, output ITree TT A'. (slide: graph repr of what the function does) interp is folding the tree, transforming all nodes into new ret type, and replace Vis with handler call \& bind.

How to "fold" an ITree?

- Define iter $:=(A \rightarrow M(A+B)) \rightarrow A \rightarrow M B$
- A: continue loop | B: break

Definition interp $\{E M:$ Type \rightarrow Type \} ` $\{$ MonadIter $M\}\{R:$ Type $\}$ (handler : $E \sim M$) : itree E R \rightarrow M R := iter (fun t : itree $\mathrm{E} R \Rightarrow$ match t with pure value: no effect left, break | Ret $r \Rightarrow$ ret (inr r) | Tau $\mathrm{t} \Rightarrow$ ret (inl t) L: t still need to be transformed, continue | Vis e $k \Rightarrow$ bind (handler _ e) (fun a \Rightarrow ret (inl (k a))) end). Vis: still need to transform kont, continue

How to represent the "fold" concept? introduce iter, show its signature. return to this later.

Effect combinators \& properties

```
id_ : E ~ itree E (* trigger *)
cat : (F ~ itree G) -> (* interp *)
    (E ~ itree F) }->(E~\mathrm{ itree G)
case_ : (E ~ itree G) }
inl_ interp_state (x & get ; ; y \leftarrowget ; ; k x y) s \approx interp_state (x & get ; ; k x x) s
in
```



```
                interp h (trigger e) \congh _ e
    preserve structure
        interp h (Ret r) \cong ret r
        interp h (x\leftarrowt; ; k x)\cong
        x}\leftarrow(\mathrm{ interp h t); ; interp h (k x)
```

4. there are many interp combinators, and they still have good properties. (slide: show combinators \& props) You can reason about non-trivial things with them like a poor version of useless load elimination

Next: non-terminating structure

Iteration

- Define iter $:=(A \rightarrow M(A+B)) \rightarrow A \rightarrow M B$
- A: continue loop | B: break

CoFixpoint iter (body : A \rightarrow itree $E(A+B)$)
: A \rightarrow itree E B :=
fun $a \Rightarrow a b ~ \leftarrow$ body a ; ;
match ab with
| inl a \Rightarrow Tau (iter body a)
| inr b \Rightarrow Ret b
end.
reminder: coinductive dt, no press, no expand, so terminating

Iteration

CoFixpoint iter (body : A \rightarrow itree E (A + B))
: A \rightarrow itree E B :=
fun $a \Rightarrow a b \leftarrow$ body $a ;$;
match ab with
| inl a \Rightarrow Tau (iter body a) | inr b \Rightarrow Ret b end.

- Does not rely on shape of the body
- No guardedness check

Properties of Iteration

```
iter f \(\approx\) f \(\ggg\) case_(iter f) id_
```



``` iter (iter f) \(\hat{\approx}\) iter (f \(\ggg>\) case_ inl_ id_) (codiagonal)
\[
\begin{aligned}
\text { iter } f & \approx \text { fiiterf } \\
\text { iterf; } f & \approx \text { iter tifig } \\
\text { iter }(f ; g) & \approx f \text {;iter }(g ; f) \\
\text { iter }(\text { iter } f) & \approx \text { iter } f
\end{aligned}
\]
```


Recursion
 A special kind of *effect*

Inductive ackermannE : Type \rightarrow Type :=
| Ackermann : nat \rightarrow nat \rightarrow ackermannE nat.

Definition h_ackermann : ackermannE \rightarrow itree ackermannE +' emptyE) :=
fun _ ' (Ackermann m n) \Rightarrow if $m=$? 0 then $\operatorname{Ret}(\mathrm{n}+\mathrm{T})$
else if $n=$? 0 then trigger (inl1 (Ackermann ($m-1$) 1))
else (ack \leftarrow trigger (inl1 (Ackermann $m(n-1)$)) ; ;
trigger (inl1 (Ackermann (m-1) ack)))
Recursion effects: D-> itree ($D+$ ' E) Can make recursive calls
Normal effects: D -> itree 'E
represented by eff
rec effect vs normal eff: rec effect $D->$ itree ($D+$ ' E), it returns an ITree with itself present so can make recursive calls, while normal eff looks like $D->$ itree ' E, no recursive calls

mrec

- mrec is to recursive effects what interp is to normal effects

(* Interpret an itree in the context of mutually recursilve definition (rh) *) Definition mrec \{DE\} (rh: D~itree (D) ${ }^{\prime}$ ' E)) : (D) \sim itree E := fun $R d \Rightarrow$ iter (fun t : itree ($D+{ }^{\prime} E$) $R \Rightarrow$ match t with \| Ret $r \Rightarrow$ Ret (inr r) \| Tau $t \Rightarrow \operatorname{Ret}($ inl $t)$ I Vis (inll d) $k \Rightarrow \operatorname{Ret}\left(\right.$ inl (bind $\left.\left(r h _d\right) k\right)$ VCunsine eff \| Vis (inr1 e) $k \Rightarrow$ bind (trigger e) (fun $x \Rightarrow \operatorname{Ret}$ (inl ($k x)$)) end) ($r h_{-}$d).	

Definition ackermann : nat \rightarrow nat \rightarrow itree emptyE nat :=
fun $m \mathrm{n} \Rightarrow$ mrec $\mathrm{h}_{\text {_ackermann (}}$ (Ackermann $m \mathrm{n}$).

mrec vs interp

fun $R d \Rightarrow$ iter (fun t : itree ($D+{ }^{\prime}$ E) $R \Rightarrow$
$\stackrel{\text { match } t \text { with }}{\mid \text { Ret } r} \Rightarrow$ Ret
$\mid \operatorname{Tau} t \Rightarrow \operatorname{Ret}($ in 1 t$)$
\mid Vis (inl1 d) $k \Rightarrow \operatorname{Ret}(\operatorname{inl}(b i n d(r h ~ d) k))$
| Vis (inr1 e) $k \Rightarrow$ bind (trigger e) (fun $x \Rightarrow \operatorname{Ret}($ inl $(k x))$)
end) (rh - d)
 itree ER MR:= iter (fun t : itree ER $=$
$\begin{array}{ll}\text { Ret } r & \Rightarrow \text { ret (inr r) } \\ \text { Tau } t ~\end{array} \Rightarrow$ ret (inl t)

end).

mrec is a fixpoint

... by an unfolding equation
mrec rh \approx interp (mrec rh) rh

What does ITree enable us to do?
 Compiler correctness

1. pre: define two languages, define compiler function
2. define their semantics by (syntax-directed) denote: denote imp $->$ ITree ImpMemE (), asm $->$ ITree (AsmRegE + AsmMemE) 0
3. given eh of ImpMemE, AsmRegE, AsmMemE, we can define interp_imp, interp_asm by using interp combinators
4. define match relation between imp state * value and asm state * value, now we have weak bisim. compiler correctness thm defined

What does ITree enable us to do?
 Compiler correctness

proof by equiv rewrites. might be automated by equality saturation, just like peephole optim. hand-written version 5 k lines, (including def $\&$ semantics def, should be 2 k lines without comments)

What does ITree enable us to do?
 Extract to OCaml

CoFixpoint echo : itree IO void :=
Vis Input (fun $x \Rightarrow$ Vis (Output x) (fun _ \Rightarrow echo))

Let rec (Vis (Input, (fun x \rightarrow lazy (Vis ((Output (Obj.magic x)), (fun _ -> echo))!)))
(* OCaml handler -----(not extracted)
let handle_io e $k=$ match e with
| Output x \rightarrow print_int x ; k (Obj.magic ())
let rec run $t=$
match observe t with
| Ret r \rightarrow r
Tau $t \rightarrow$ run t
Vis (e, k) -> handle_io e (fun x \rightarrow run (k x))

What does ITree enable us to do?

Extract to OCaml

- Reference interpreter for free
- Support side effects not implementable in Coq (network IO, etc)
- Fuzzing

1. implement eh to do side effects not possible in coq (network IO)
2. fuzzer, fuzz your semantics before proof (next slide: avoid retakes)

What does ITree enable us to do?

Extract to OCaml

- Add new feature to semantics
- Try to prove (took months)
- Oops! Feature unsound!!
- Rework the semantics...
- Retake the proof (took months)
- Oops! Still unsound!!
- Months wasted...e
- Add new feature to semantics
- Extract \& fuzz the interpreter (in one day)
- Oops! Unexpected output!
- Rework the semantics..

VS - Extract \& fuzz the interpreter (in one day)

- Oops! Unexpected output!
- ...
- We believe this semantics should be right!

Try to prove (took months)

- Done!

What does ITree enable us to do?

Trace semantics

Trace: a sequence of events emitted by the execution of a program

```
nductive trace ( }\textrm{E}:\mathrm{ Type }->\mathrm{ Type)(R:Type):Type :
1 TEnd: trace ER
TRet:R R trace ER
ITEventEnd: \forall{{X}, EX X trace ER
TEventResponse : \forall{\X}, E X ->X 隹race ER R trace E R.
Inductive is_trace_of {E:Type ->Type}{R:Tyye} :
    itree ER->trace ER->Prop:=
    ITraceRet: \forallr, is_trace_of (Ret r) (TRet r)
    | TraceTau: \forallt tr, is_trace_of t tr t is_trace_of (Tau t t tr
```



```
        is_trace_of (kx)tr tr is_trace_of (Vis ek) (TEventResponse extr),
        Pl
    Definition 1(Trace Refinement). t\sqsubseteq u iff }\forall\textrm{tr}\mathrm{ , is_trace_of t tr }->\mathrm{ is_trace_of u tr.
    Definition 2(Trace Equivalence). }\textrm{t}\equiv\textrm{u}\mathrm{ iff }\textrm{t}\sqsubseteq\textrm{u}\mathrm{ and }\textrm{u}\sqsubseteq\textrm{t}
    Using these definitions, we can show that trace equivalence coincides with weak bisimulation,
i,e, that t1 \approxt2\Longleftrightarrow t1\equivt2
```

11. relation with good old trace semantics
12. compcert verify programs by step: st $->$ ev $->$ st $->$ Prop, execute program got a trace
13. can also extract trace from itree, good property: weak sim <-> trace reequiv
14. able to reason nondeterministic behavior (next slide)

What does ITree enable us to do?

Trace semantics
Trace: a sequence of events emitted by the execution of a program Definition 1 (Trace Refinement). $\mathrm{t} \sqsubseteq \mathrm{u}$ iff $\forall \mathrm{tr}$, is_trace_of $\mathrm{t} \mathrm{tr} \rightarrow$ is_trace_of u tr. Definition 2 (Trace Equivalence). $\mathrm{t} \equiv \mathrm{u}$ iff $\mathrm{t} \sqsubseteq \mathrm{u}$ and $\mathrm{u} \sqsubseteq \mathrm{t}$.

Using these definitions, we can show that trace equivalence coincides with weak bisimulation, i.e., that $\mathrm{t} 1 \approx \mathrm{t} 2 \Longleftrightarrow \mathrm{t} 1 \equiv \mathrm{t} 2$.

- Reason about non-deterministic side effects

Conclusion

- ITree: a foundation for program semantics and an equational theory
- A shallow representation of non-terminating effectful languages, leveraging the nature of coinductive types
- Leverage existing power of meta language (proof assistants), simplifying proof engineering
- Proof by eq rewrite, room for automatic reasoning
- Extract to executable programs, enable "swift" development of forma semantics

Future work

- Non-determinism \& concurrency (multiple followups)
- Relate its theorem with domain theories, operational semantics, and game semantics
- Does not work when the state match relations is not one-to-one (impossible to formalize most practical languages, e.g. Clight)

Interaction Trees

A denotational semantics and its equational theorems

